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On the no-slip boundary condition 
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It has been argued that the no-slip boundary condition, applicable when a 
viscous fluid flows over a solid surface, may be an inevitable consequence of the 
fact that all such surfaces are, in practice, rough on a microscopic scale : the energy 
lost through viscous dissipation as a fluid passes over and around these irregu- 
larities is sufficient to ensure that it is effectively brought to rest. The present 
paper analyses the flow over a particularly simple model of such a rough wall to 
support these physical ideas. 

1. Introduction 
It is now accepted that, when a viscous fluid flows over a solid surface, there is 

no relative motion between the fluid and the solid at  the interface. Under normal 
circumstances, the no-slip condition provides a realistic restriction on solutions 
of the Navier-Stokes equati0ns.t Confidence in the relevance of this boundary 
condition stems from both direct experimental evidence and the success achieved 
by theories which incorporate this assumption (see, for example, Goldstein 1938). 

The situation is much less clear when we inquire into the origin of the no-slip 
condition. For gases, kinetic theory and thermodynamic arguments can be 
invoked to provide an explanation (Lighthill 1963) : the gas molecules are required 
to remain chemically adsorbed onto a solid surface for a time which is sufficiently 
long to allow a thermal equilibrium to be attained. For liquids, a similar explana- 
tion in molecular terms is possible: it can be argued that the intermolecular forces 
between the liquid and a solid wall give a bond which results in the no-slip condi- 
tion. However, although this seems plausible in many circumstances, there are 
situations in which it may be questioned. For example, when the liquid involved 
does not wet the solid on which it moves, so that the angle of contact between the 
liquid and solid is close to 180", then the intermolecular forces giving rise to the 
above bond may be orders of magnitude smaller than the forces between the 
liquid molecules themselves. In this situation at  least, one wonders whether this 
explanation can be adequate. Indeed, if the cohesive forces a t  the interface were 
entirely absent one would expect a boundary condition of zero shear stress, rather 
than one of no slip, to be applicable for the motion of the liquid. On this basis, at 
any actual fluid/solid interface, a condition lying somewhere between these two 
extremes would seem to be more appropriate. 

t Rarefied gases form an exception to this statement. Under certain conditions of low 
density it is still possible to regard these as continua with Newtonian properties but a slip 
condition has to be assumed. 
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A possible alternative explanation of the origin of the no-slip condition, which 
relies on the fact that all solid surfaces are, in practice, rough on a microscopic 
scale, has been outlined by Pearson & Petrie (1968). They were forced to consider 
the boundary conditions applicable at  a solid surface in more detail by the obser- 
vation that a polymer melt does, under certain circumstances, show a slip 
velocity: while a no-slip condition seems to be relevant for moderate values of 
the shear rate at  the solid boundary, slipping can occur at  higher values. This is 
convincingly shown in experiments performed by Benbow & Lamb (1963), who 
also offer evidence that this breakdown may sometimes be responsible for the 
instability termed melt fracture which can occur during an extrusion process. 
Theoretical work by Pearson & Petrie (1965, 1968) supports this conjecture, for 
they show that the use of a boundary condition allowing slip can lead to the 
growth of instabilities in the flow between parallel planes. 

In  the present paper, the original physical ideas of Pearson & Petrie (1968) are 
elaborated, and the flow of an incompressible Newtonian fluid over a particular 
family of models for a rough wall is examined in detail. As remarked above, the 
actual condition applicable at  the interface between a fluid and a solid should lie 
between the two extremes of zero shear stress and no slip: we here show that, 
whichever of these two extreme hypotheses we apply on the microscopic scale 
along the undulations of the wall, the no-slip condition emerges as the relevant 
macroscopic boundary condition in the sense that deviations from it are of the 
same order of magnitude as the dimensions of the asperities at  the wall. We would 
therefore expect the same conclusion to hold whatever the actual strength of the 
bond that exists between the liquid and the solid, so that the no-slip boundary 
condition as a macroscopic phenomenon can be explained solely in terms of a 
microscopic roughness of the wall. 

Tor a discussion of the motion near a solid wall, there are three relevant length 
scales: 

(i) I, the length scale associated with the molecular structure of the fluid; 
(ii) B, the length scale associated with the roughness of the solid surface; 
(iii) L, an appropriate length scale associated with the bulk motion of the fluid. 

L may be the diameter of a tube through which the fluid passes, the radius of 
curvature of the surface bounding the flow as it appears on a conventional 
laboratory scale of measurement, or the thickness of a boundary layer above 
the solid surface: in the present context we are concerned only with situations 
where L is much larger than both I and e.  

For a typical Newtonian fluid passing over a solid surface we will have e $ 1, 
so that, when considering the effect of the asperities of the rough surface on the 
flow, we may still regard the fluid as a continuum. However, for a polymer melt 
passing over the same surface we may have e = O(Z): the dimensions of the long- 
chain molecules in the melt will be comparable with those of the asperities, and 
the motion near the wall cannot be considered solely in terms of the motion of a 
continuum. Pictorially, the local behaviour at  the surface will be more akin to the 
motion of steel wool over sandpaper, and the macroscopic boundary condition 
emerging from this interaction might be expected to have more in common with 
that of solid friction than the no-slip condition usually associated with fluid flow. 
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Further discussion of the possible behaviour of a polymeric material at  a solid 
boundary may be found in Pearson & Petrie (1968). We here consider in more 
detail the situation for which E % I, and a Newtonian fluid is involved. 

In a conventional analysis, a solid wall which, in practice, contains roughness 
elements with a length scale E is replaced by a smooth boundary at  some mean 
position. The actual flow which occurs in the neighbourhood of this idealized 
surface is complex, but at distances of order e away from it the flow velocity in 
the fluid, averaged over a small area parallel to this apparent wall surface, must 
itself be parallel to the surface. If this average has a magnitude U,, then U, would 
be interpreted on a macroscopic level as a slip velocity. For a Newtonian fluid, 
with e 1, the motion near the wall may be discussed in terms of a continuum 
model. Furthermore, if the length scales involved are small enough to render 
negligible any inertial effects in the flow, the equations of Stokes flow will be 
applicable. No matter what the actual boundary condition at the wall may be, 
the motion of the fluid over and around the asperities of dimension B must give 
rise to velocity gradients which are O(U,/E) and hence, if p is the viscosity, to a rate 
of dissipation of energy which is O(pUu,2/s2) per unit volume. If we consider the 
motion in a region within a distance E of the mean position of the wall, this is a rate 
of dissipation of energy which is O(,uUu,2/e) per unit area of the apparent wall 
surface. In  the absence of inertial effects, this energy loss must be balanced by 
the work done by the viscous traction exerted on the fluid in this region by a shear 
rate which is O(U,/E) acting at  the edge of the layer near the wall. Thus, the 
energetics of the flow in the immediate neighbourhood of a rough wall are such 
that the shear rate K, observed at  the wall on a macroscopic scale is inevitably 
O(U,/e). Since K, must be finite, it follows that V,/Kw = O(e), irrespective of the 
actual boundary condition along the undulations, provided only that this condi- 
tion does not involve an energy-producing mechanism. In other words, no slip as 
a macroscopic phenomenon will result from a microscopically rough surface. 

To illustrate further the implications of the roughness of a surface, consider 
the extreme, hypothetical, case where there is no bond between a solid and a fluid 
in contact, and a zero-shear-stress condition is thus applicable on the microscopic 
scale. If we apply such a boundary condition for flow between parallel planes 
which we regard as being perfectly smooth, the result will be a plug flow with 
a constant velocity across the channel. However, if we apply the same condition 
on parallel planes which we regard as rough, the above physical arguments imply 
that the resulting flow will be essentially the parabolic velocity profile with zero 
slip at  the boundary, as sketched in figure 1. 

In  a general motion with given boundaries we may consider a family of mathe- 
matical problems, each characterized by a different value of the roughness 
parameter E ,  which gives the size of the asperities on the boundary, these being 
geometrically similar for different values of 8. Some value of e corresponds to the 
given rough wall, while e+O gives the idealized ‘smooth’ surface which is 
normally used for purposes of analysis. One then expects that the velocity field 
for such a family of problems could be expressed as 

U(X,€) = U,(X)+EUI(X)+€2U2(X)+ ... ) (1.1) 
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where x is the position vector. If the true boundary condition along the undula- 
tions of the rough wall were known (be it no slip, zero shear stress, or some inter- 
mediate condition) one might suppose, a priori, that u,(x) would be found by 
applying the same boundary condition at  the position of the smoothed surface 
E + O .  However, the above implies that this is not so, and that the expansion 
forms a singular perturbation in E :  whatever the true boundary condition at  the 
rough wall may be, u&x) is determined by applying a no-slip condition at the 
smoothed wall. The singular nature of the perturbation expansion obviously 
reflects the singular nature of the bounding surface as E -+ 0: although the limiting 
surface is continuous and 'looks smooth', mathematically it is nowhere 
differentiable. 

The above arguments have proceeded on the assumption that one length 
scale, c, suffices to characterize the surface roughness: the surface has irregu- 
larities of amplitude a and wavelength h which are comparable and of order E .  

The limit envisaged holds a/h  fixed and allows a -+ 0. If h is held fixed while a -+ 0 
an entirely different behaviour can be expected. In  fact, the perturbation 
expansion will then be regular. Nevertheless, such a calculation does show a 
behaviour consistent with the above. Nye (1969, 1970)) in an entirely different 
context, considers flow over a rough surface at  which a zero-shear-stress condition 
is applied, taking a -+ 0, but h fixed and finite to effect a linearization. A slip 
velocity is found which varies as a-2, becoming infinite as a + 0 but having a finite 
value for small, but non-zero, amplitudes. Although this is suggestive, we must 
adopt a quite different approach to tackle the present problem, when both 
amplitude and wavelength are small and of the same order. 

2. Flow near a rough solid surface 
We consider the flow in the immediate neighbourhood of a solid surface in 

a quite general flow. For simplicity the geometry and motion is taken to be locally 
two-dimensional, i.e. the roughness is assumed to consist of corrugations which 
are perpendicular to the flow. With this restriction we obtain a tractable problem: 
we would not expect variations in a third direction to change the results 
qualitatively. 
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Dealing with a particular section of the boundary, we introduce an orthogonal, 
curvilinear co-ordinate system (X, Y )  there, with the X axis along the surface 
and the Y axis perpendicular to it, so that the flow takes place in the X ,  Y plane. 
Y = 0 is to correspond to some mean smooth curve in the rough surface, and is 
the flow boundary which would be used in any analysis of the flow on a macro- 
scopic scale. 

We now recognize that the surface bounding the flow actually contains rough- 
ness elements of length scale E ,  and to focus attention on these we change 
variables to 

To determine the effect of small asperities in the boundary on a given physical 
situation we now consider the limit e-+ 0 with X and Y fixed. In the physical 
X, Y plane we are considering a succession of problems with a bounding surface 
which contains asperities of successively smaller size, whilst keeping these irregu- 
larities similar in shape. In  the x, y plane the asperities have a dimension O( I) and, 
in the limit E-+  0, the curve y = 0 becomes a straight line, so that the (x, y) 
co-ordinates form a rectangular Cartesian system. For a fixed Y ,  as B +  0, then 
y + 00, so that the flow in an inner region near the wall covers the upper half of the 
x, y plane. Suppose that the boundary behaviour of the outer solution-the 
solution applicable in the main flow - requires there to be a wall slip velocity Us 
and a wall shear rate K,. The shear rate K, is imposed by the outer solution, and 
it is then required to show that the dynamics in the inner region imply 
q / K w  = O(E), independently of the actual boundary condition applied at the 
rough surface. 

In  the inner flow region we make the lengths non-dimensional using 8, the 
velocities non-dimensional using E K ,  and the pressure non-dimensional using p ~ , .  
The appropriate limiting form of the Navier-Stokes equation becomes the Stokes 

(2.1) 
equation vp = VZU, 

where V denotes the gradient operator with respect to (x, y), and p and u are the 
dimensionless pressure and velocity. The outer boundary condition for this inner 
region requires the (2, y) components of the dimensionless velocity to vary as 

x = XI€, y = Y/€. 

(u, w )  N (U  + y, 0) as y+00, where Us = CK, U .  (2.2) 

p -+ constant as y -+ 00. (2.3) 

It follows from this that, in the limit, 

This shows the principal difference between the present theory and boundary- 
layer theory. In  the latter case, the pressure in the layer near the wall is inde- 
pendent of y, but its variation along the wall is furnished by the outer solution. 
Here, the co-ordinate X is scaled as well as the co-ordinate Y so that, although 
the pressure varies with X in the outer flow, the limits for the inner flow are such 
that ap/ax = O(E)  as y-too. This fact makes the dominant term of the inner 
solution largely independent of the outer solution: the latter merely gives a value 
for K,. Here, we do not propose to consider the outer solution, which will depend 
on the overall geometry of the apparatus, but to regard K~ as given. 
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A B 

FIGURE 2. Sketch of the flow domain in the x, y plme. 

FIGURE 3. Transformed flow domain in the 5 plane. 

The problem for the inner region in the limit s + 0 thus reduces to the solution 
of the Stokes equation (2.1) in the x, y plane for a unit shear (2.2) over a corrugated 
plane wall with a length scale which is O( 1). It is then required to show that U in 
(2.2) is determinate and 0(1), so that the slip velocity Us is an O(s) quantity 
times K,. 

3. The boundary shape 
If we assume that the undulations are periodic and symmetric, the geometry 

in the x, y plane may typically be as in figure 2. The velocity, vorticity and 
pressure at  a point on the line AJ, are the same as at  the point on BJ, with the 
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same y co-ordinate. Using this correspondence, it is only necessary to consider 
the flow in the semi-infinite strip bounded by the lines AJ, and BJ,. With 
z = x + iy, Riemann’s theorem implies that there exists a conformal mapping 
z = w(5) of this strip onto the exterior of the unit circle in the 6 plane, with a cut 
along the negative real axis. The correspondence of points can be taken as in 
figure 3, and it is evident from the assumed symmetry that points on AJ, and BJ, 
with equal y co-ordinates (e.g. C and D) transform to neighbouring points on 
either side of the cut. Using square brackets around a quantity to denote the 
difference between its values at 1 + iy and at  - 1 + iy (or the difference between 
the values at the corresponding points in the 5 plane), then [w(5)] = 2, whence 
[w’([)] = 0. It follows that ~ ’ ( 6 )  is analytic and single-valuedin the region exterior 
to the unit circle, and hence we may write 

z ia, 
n=l Cn w(5) =;logC+iC+ - for /[I > 1, 

where C and an are constants. The imposed symmetry requires all these constants 
to be real. Writing [ = ei8, the surface is given in parametric form by 

e m  x = --+ C ansinno, 

y = C +  C ancosn8, 

?7 n = l  

m 

n = l  

Choosing C appropriately allows the x axis in figure 2 to be placed at  a suitable 
level, which is to be regarded as the mean position of the rough surface. 

While any surface with the requisite periodicity and symmetry can be obtained 
using a mapping of the form (3. l), we here consider only one particular family of 
surfaces where the series contains only the first term, i.e. a, = 0 for n > 1, while 
a, = a/n, say. It also proves to be convenient and realistic to take C = 0,  so that 
we employ 

i ia w(6) = ;log[+- 
7 4 ’  

(3.3) 

where a is a real parameter. This implies that 

w’(6) = (i / i .P) K-a), (3.4) 

so that a must be restricted by la1 < 1 for the mapping to be conformal for 
161 > 1. The extreme values of y are -I a/n. Thus lal/ris aneffective amplitude-to- 
wavelength ratio, and the choice C = 0 has placed the x axis midway between the 
highest and lowest points of the surface. Moreover, it is easy to see that the effect 
of replacing a by - a is merely to translate the surface through unit distance in 
the x direction, so that we may restrict attention to the range 0 6 a < 1. The 
surfaces modelled in the z plane as a varies within this range are sketched in 
figure 4. a = 0 gives the plane surface devoid of any irregularities, while cusps 
appear on the boundary as a + I. The flow over this cusped form can be obtained 
by a limiting process, as it is convenient to assume that [a\ < 1 during the 
manipulations. Plows over a more general surface, with more terms in the series 
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+ 
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- l / a  

FIGURE 4. Form of the surface modelled by the function w(5) given in (3.3). 

of ( X i ) ,  can obviously be obtained by methods similar to those to be adopted 
here, but the amount of labour involved increases with the number of terms 
employed. 

4. Formulation in complex-variable form 
Any solution of the Stokes equation (2.1) in two dimensions can be expressed 

in terms of two functions #(z )  and ~ ( z )  which are analytic functions of x within 
the flow domain. Using the notation of Richardson (1968), we have 

c _ -  

- v + iu = # ( z )  + z$’(z) + x’(z),  

where an overbar denotes the complex conjugate, while the pressure p and 
vorticity w are given by 

w + ip = - 4#’(2). 

In  the present instance it proves more convenient to use, instead of ~ ( x ) ,  a 
function n(x) defined by 

Equation (4.1) then becomes 
n(2) = 2$’(2) +x‘(z). (4.3) 

- -  
-v  +iu = # ( x )  + ( z - Z )  $’(z) +n(z) ,  (4.4) 

while the force components (Fxds,F,ds) across an element of arc ds are 
determined by - -  

(Fx+iF,) ds = 2 d ( # ( ~ )  - (2-5) $’(x) - n ( ~ ) ) .  (4.5) 

A given velocity and stress field determines $(z)  and n ( z )  up to the addition of 
a complex constant y to $(z),  together with the simultaneous addition of -7 to 
n(z) .  If we choose this constant appropriately, and choose the pressure to vanish 
in the shear flow at large y, the boundary condition (2.2) implies that 
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The symmetry of the problem requires that 

[w+ip]  = 0, [-v+iu] = 0. (4.7) 

(4.8) 

The fist condition implies that [$'(z)] = 0 from (4.2), and (4.6) then implies that 

[9(4 - a21 = 0. 

[n(z) + $21 = 0. 

The second part of (4.7), with (4.4), requires that [ $ ( x )  +*)I = 0, or 

(4.9) 

Defining @(%) = $(w(c)) and II(g) = n(w([)), the jump conditions (4.8) and 
(4.9) imply that @(c) - $w(g) and II(g) + aw(c) are both single-valued analytic 
functions of 6 in the whole of the region exterior to the unit circle. Morover, from 
(4.6), @(<)-tw(6)+iUand II(c)+&w(c)+Oas IcI+m. Itthereforefollowsthat 
Laurent expansions of the form 

ia, 
@([) - tw(g) = iu + c - 

n = l  
(4.10) 

exist in the exterior of the unit circle, where a, and b, are constants. 
Given conditions on the bounding surface in the z plane transform to relations 

between @(c), lI(5) and w(c) to be satisfied on the unit circle in the c plane. 
Inserting (4.10), for a given form of w(<), and writing c = euin them, allows these 
conditions to be written as the vanishing of particular Fourier series for all 0. 
We are thus led to a system of equations for a, and b, which yields the required 
solution. If the boundary conditions are symmetric, then both the a, and b, are 
real. 

For particular boundary conditions, the above procedure can obviously be 
simplified, but it has the merit that it can, in principle, be employed whatever 
conditions are adopted on the undulations. In  the following two sections, solu- 
tions are obtained for the shear flow (4.6) over the particular surface given by 
(3.3) with, first, a no-slip condition at  the surface and, second, a zero-shear-stress 
condition. 

5. Shear flow over the rough surface with a no-slip condition 
From (4.4), the no-slip condition transforms to 

~ ( 5 )  +(w(g) - - ~ ) ] ~ ) / ~ )  +m) = o on g = ei*. (5.1) 

Substituting (3.3), (3.4) and (4.10) into this and comparing coefficients, we obtain 
a system of equations which leads to 

I u = -a2/2n, 

a, = -a/2n; a, = 0 for n > I, 

b, = (an/2n) (1 +a2) for all n, 
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so that the solution has the closed form 

I ia2 ia @(6) = &W(C)---- 
27r 274’ (5.3) 

ia l+a2 J 
rI(5) = - &(5) +--. 277 [-a 

That this solution satisfies (5.1) can now be verified directly. The first relation of 
(5.2) determines U as a function of a. Having applied a no-slip condition, such 
a relation is to be expected in the present case. Nevertheless, this example illu- 
strates the method of solution, and the resulting closed form obtained is of interest 
in other fields involving flows over wavy boundaries. It also offers an interesting 
comparison with the case considered in the next section. 

In fact, the form of (5.1) is such that, when a no-slip condition is relevant, 
a closed-form solution can be obtained more directly for quite general surface 
shapes by using (5.1) to continue @(6) analytically into the interior of the unit 
circle. We do not pursue this here, since the particular case already dealt with 
suffices for present purposes. 

6. Shear flow over the rough surface with a zero-shear-stress condition 
The manipulations in this case become somewhat more involved, but are 

straightforward. We first require that the surface be a streamline, expressed by 
Re{( - w + iu) d5} = 0, where dx represents an increment along the surface. The 
zero-shear-stress condition at  the boundary is expressed by Re {(Fz + iFu) dz} = 0. 
Transforming these conditions to the unit circle in the 5 plane, inserting the 
representations (4.10) and comparing coefficients, we obtain a system of equations 
for the a, and b,. These may be simplified to yield a second-order difference 
equation for the coefficients an, viz. 

27r for n = I, 
(6.1) 

0 for n > 1, 
-a(2n+3)a,+,+2(a2n+n+ l )an+,-a(2n-  I )a ,  = 

to be solved with the initial conditions 

a, = - 1/2an,  

The b, are then determined by 
bl-a/n for n = 1, 

b, for n > 1. 

n 

m= 1 
-a(3n+l)a,+,+(3n-l)an-(1+a2) C maman-m = 

(6.3) 
The difference equation (6.1) and the initial data (6.2) allow each un to be 

expressed in terms of U and a: equation (6.3) then allows all the b, to be similarly 
expressed. It would appear, therefore, that the series for @(5) and II(C) can be 
determined without any restriction on U.  However, these series must define 
functions which are analytic in 2 1, and it is this condition which fixes U. 
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To see this, we note that (6.1) implies that 

an+2 - (a + 1/a) a,,, + an NN 0 for large n. (6.4) 

(6.5) 

The solution of (6.1) can thus be written as 

an = A(a1, a,)fi(n) + B(a1, aJfi(n), 
where A(a,, a,) and B(a,, a,) depend only on the initial values a, and a2, and are 
thus functions of U and a) while 

f,(n) N an, ,fi(n) N a-n as n-tm. (6.6) 

From this, the series for @(c) resultingfromfi(n) converges in 161 > 1.1, while that 
fromf2(n) converges only in 161 > I01I-l. Since la1 < 1 and @(C) is to be regular in 
151 k 1 it follows that B(a,,a,) = 0 This furnishes the required relation giving 
U in terms of a. 

To obtain the analytical form of this relation for U we require the complete 
solution of the difference equation (6.1)) and this may be obtained using a 
Maclaurin transform. If we define 

then P(6) is to be analytic and single-valued in (c( 2 1. If we multiply the nth 
equation of the system (6.1) by Cpn and sum over n, we fmd 

which implies that 

To ensure that F(5)  is analytic at  infinity, and is O( 1/6) there, we must begin the 
integration contour for the integral on the right at  infinity. Then, to ensure that 
F(6)  is not singular at  6 = l / a  this integral must vanish when evaluated at  6 = l /a,  
and this restriction gives U as a function of a. Using the initial values a, and a, 
given by (6.2), this relation can be reduced to 

a2E(a) - (1 - a2) K(a) 
E(a)  - (1 - a2) K(a)  ' 2nU = - 

where K(a)  and E(a) are complete elliptic integrals of the first and second kinds, 
respectively, defined by 

These are tabulated as functions of the argument a by Fletcher (1940). 
This now furnishes a closed-form solution for the whole flow in terms of elliptic 

integrals, but our present interest is directed towards the relation (6.9). From 

2 n U - t - 1  as a++l, (6.10) 
this we find that 
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FIGURE 5 .  The variation of U with a. ---, variation with the no-slip boundary condition, 
as given in (5.2); -, variation with the zero-shear-stress boundary condition, as @ven 
in (6.9). 

while nU -a-2 as a+0, (6.11) 

in agreement with Nye (1969, 1970). We also have 

d(nU)/da++ 1 as a+& 1. (6.12) 

It should be noted that the limiting values (6.10) and (6.12) for a++ 1 are the 
same as those holding for the relation 2nU = -a2 which was derived in (5.2) as 
the relevant form when the no-slip condition is applied: loosely speaking we may 
say that, for the particular limiting form of the surface with the cusps (a+ -I: l), 
the zero-shear-stress condition is just as effective as the no-slip condition in 
producing a macroscopic boundary condition which would be interpreted as 
no slip. For other forms of the surface with a + 0, the difference between the two 
cases is still of the same order of magnitude as the dimensions of the irregularities 
in the surface, and therefore either of them would lead to a macroscopic no-slip 
condition. The variation of U with a for the conditions of no slip and zero shear 
stress analysed here is sketched in figure 5. One might anticipate that the analogous 
curve obtained by applying some intermediate, and more realistic, condition at 
the boundary would lie between these two, and hence lead to the same conclusion 
that the macroscopic no-slip condition must inevitably result. 

7. Conclusions and comments 
It has been shown in the previous section that a steady shear flow can be 

maintained over a solid surface at which a zero-shear-stress condition is applied, 
provided the surface is corrugated. When the surface is plane, no such flow is 
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possible. Regarding this flow as the inner solution obtained near a rough wall, as 
in $ 2 ,  this then implies that, even ifthere is no resistance at  all to a relative motion 
between a fluid and a solid in contact, the roughness alone will ensure that the 
boundary condition observed on a macroscopic scale will be one of no slip. It 
therefore seems reasonable to expect the same conclusion to hold whatever the 
magnitude of the resistance to relative motion arising from intermolecular forces 
may be. 

The above calculations cannot, of course, be regarded as a proof, but support 
the contention that the familiar no-slip condition is to be expected because, to 
use the language of the variational calculus, the surfaces encountered in practice 
are strong variations from the idealized, smooth surfaces normally envisaged in 
theoretical work, rather than weak variations, i.e. while the actual and idealized 
surfaces are close together, their slopes a t  corresponding points are significantly 
different. We have here considered only one particular family of surfaces, and 
considered only the particular extreme boundary condition of perfect slip, in 
order to obtain a specific problem to be solved. A proof must allow for a general 
form of roughness and should preferably insist only that the actual boundary 
condition between the solid and the fluid does not inject energy into the flow. 
Moreover, the approach used above, invoking matched asymptotic expansions, 
while suggestive, would probably be so difficult to justify rigorously that a more 
general attack using techniques of functional analysis is likely to prove simpler. 
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